Solution:
The Boltzmann equation is:
N2 / N1  =     [g2 / g1 ]   exp (- E2 – E1) / kT
And from the table, g2 = 8 and  g1 = 2
We require the condition that:  N2 =  N1     so:
1 =     [8/ 2 ] exp (- E2 – E1) / kT
But:  E2 =  - 13.6 eV and E1 = -3.4 eV, therefore:
1 =  4 exp (-10.2 eV)/ kT
Taking natural logs:
ln (4)  =    (10.2 eV)/ kT
where: k =   8.6174 x 10 -5 eV/K
Solving for T:  
T =    10.2 eV/  (ln 4) (8.6174 x 10 -5 eV/K)
T =  10.2 eV/ (1.3862) (8.6174 x 10 -5 eV/K)
T= 85 388 K or T = 8.54 x 10 4 K
2 ) For the Balmer a line (called H- alpha), we know:
E3 – E2 =  - 13.6 eV ( 1/ 3 2   -  1/ 2 2 )   = 1.88 eV
a)     From this information calculate the ratio N2 / N1    
b)     Obtain the specific intensity from:  
I u  =  2h u 3 / c 2  [1/ exp (hc/lkT]
Solution:
N2 / N1   =     [g2 / g1 ]   exp (- E2 – E1) / kT
From the table in the Dec. 5th  post;  g2 = 8 and  g1 = 2   
k =   8.6174 x 10 -5 eV/K
N2 / N1    =     [8/ 2 ]   exp (- E2 – E1) / kT
N2 / N1      =  4 exp (-1.88 eV)/ (8.61 x 10 -5 eV/K) (10 4 K)
N2 / N1      =  4(0.113) =  0.452
We need to use consistent cgs units.  Planck constant h = 6.62 x 10  -27 erg-s
c=  3 x 10  10 cm/s
l  =  hc/ E =  (6.62 x 10  -27 erg-s) (3 x 10  10 cm/s)/ 3.0 x 10  -12 erg
l  =  6.62 x 10  -5 cm  
k=1.38 x 10  -16 erg/K
[1/ exp (hc/lkT]  =
1/ [exp (6.62 x 10  -27 erg-s) (3 x 10  10 cm/s)/ (6.62 x 10  -5 cm)  (1.38 x 10  -16 erg/K)( 10 4 K)
= 0.113
I u  =   2h u 3 / c 2  [0.113] erg cm -2/s 
But  u =   E/h   =   
3.0 x 10  -12 erg/ 6.62 x 10  -27 erg-s  =  4.53 x 10  14 /s
So:
I u  =    0.226(6.62 x 10  -27 erg-s) (4.53 x 10  14 /s) 3 / (3 x 10  10 cm/s) 2
I u  =     1.51  x 10  -4 erg cm -2/s
3)Calculate  the transition probability you get using the Einstein equation:
A 21=   6.67 x 10 16 [g f/g2  l2   Å]
What possible errors might cause the values to diverge? (Take g = f » 1)
  l =  6.62 x 10  -7 m  =  6.62 x 10  -5 cm =  6620 Å
With g2 = 8  and g = f = 1
A 21=   1.93 x 10 8 [Å-2]
Compare to standard form (see e.g. Wikipedia, “Einstein coefficients”)  given in multiple physics papers as:
A 21=  [f g1/g2]{ 2 π  u 3  e 2 }/ e o  me c3   
A 21 =    1.87 x 10 7    or:    0.187  (in defined units of    10 8  s)       
Error sources: Imprecise oscillator frequency f
Error in one of the statistical weights.
Error in one of the statistical weights.
No comments:
Post a Comment