Solution:
For regular Stokes' parameters we have:
d = Ö (Q2 + U 2 + V2) / I
(For 0 < d < 1.)
We have for the normalized Stokes parameters:
s 0  =   I / S   =   1   
s 1  =   Q / S
s 2  =   U / S
s 3  =   V  / S 
So through the use of algebra we obtain:
d  =  Ö (s 1 2  +   s 2 2  +   s 3 2  )  /  s 0    =
Ö (s 1 2  +   s 2 2  +   s 3 2  )
2)  Write a matrix equation for a completely unpolarized radio wave using a left circularly polarized wave and a right circularly polarized wave.
Solution:
A completely unpolarized wave requires the result:  C =
½ [1…..0] 
     [0…..1]
Left circularly polarized wave: has:
½ [1…..j] 
    [-j…..1]
And:   Right circularly polarized wave: has:
½ [1…..-j] 
    [j…..1]
Then to get C  we need:
A + B  = C
Where: A  =    
1/4 [1…..j] 
      [-j…..1]
B = 
1/4  [1…..-j] 
       [j…..1]
.
Check by using matrix addition to add and you obtain matrix C
3) The coherency matrix of some individual radio wave is given by:
½ [1…..0] 
     [0…..0]
Show how the  resultant unpolarized wave's coherency matrix may be obtained by showing the C-matrix for the other wave needed to combine with the individual wave above.
Solution:
The  resultant unpolarized wave's coherency matrix would be:  C=  
½ [1…..0] 
     [0…..1]
The given matrix which needs a complementary matrix to obtain the above is:  A =
½ [1…..0] 
     [0…..0]
Then matrix subtraction, e.g.   C - A  yields B =
½ [0…..0] 
     [0…..1]
Which is the matrix needed to obtain C.
4) Four radio waves are detected and analyzed and found to have the characteristics shown below:
a) d = 0
b) d =  ½      AR = 4     and   t =  135 deg
c)  d =  ½      AR = 4     and   t =  - 135 deg
d)  d =  ½      AR = 4     and   t =  45 deg
Find the normalized Stokes parameters and the coherency matrices for these waves.
Solutions:
a) d = 0  denotes a completely unpolarized wave so 
Stokes parameters:   [1..0..0..0]
Coherency matrix: C =
Coherency matrix: C =
½ [1…..0] 
     [0…..1]
b)   d =  ½      AR = 4     and   t =  135 deg
We have for the normalized Stokes components:
s 0    =   1
s 1 = d cos 2t  cos 2 e  
s 2 = d sin2t  cos 2 e
s 3 = d sin2e
s 1 = d cos 2
s 2 = d sin2
s 3 = d sin2e
And:   cos 2 e  =   (AR2    -  1) / (AR2   +  1) 
=  (42    -  1) / (42   +  1)   =   15/  17
And:   cos 2t     =   cos (2 x 135) = cos 270 =  0
   sin2t     =   sin (2 x 135) = sin  270 =  -1
Then Stokes parameters for  these characteristics:
[1..0..0....  -1./2]
Coherency matrix:  C =
½ [1…..-j] 
    [j…..1/2]
(c) is analogous in solution to (b)  except t=  - 135 deg
Then Stokes parameters for  these characteristics:
[1..0..0.... ½]
Coherency matrix: C =
Coherency matrix: C =
½ [1…..j] 
    [-j…..½]
d) d =  ½      AR = 4     and   t =  45 deg
cos 2 e  =   (AR2    -  1) / (AR2   +  1) 
=  (42    -  1) / (42   +  1)   =   15/  17
And:   cos 2t     =   cos (2 x 45) = cos 90 =  0
   sin2t     =   sin (2 x 45) = sin 90 =  1
Then Stokes parameters for  these characteristics:
[1..0..0.... ½]
Coherency matrix: C =
Coherency matrix: C =
½ [1…  ..j] 
    [-j.....½]
No comments:
Post a Comment