3. Nuclear
Reactions
Alpha
decay:  Z X A ®  Z-2 X A-4 + 2
He 4
Beta
Decay: Z
X A + -1 e0 ®  Z-1 X A   + u
Example:
Find the Q-Value of the alpha decay for Polonium:
84
Po  210     ®  82 Pb 206     +   
2 He 4
If
the mass of  84 Po 210   = 209.982u, 
the mass of  82 Po  206   = 205.969u, and  2 He 4 =
4.002u.
We
confirm that typical for a-decay,
the atomic weight A decreases by 4, and the atomic number Z by 2. Then we may
write for the Q of the reaction:
Q
= [(total rest mass before decay) –
                                (total rest mass after decay )] c2
Q
= [(209.982u) –  (205.969u + 4.002u)]c2
Q
= [(209.982u) –  (205.969u + 4.002u)]c2
Q
= [(209.982u) –  (209. 971u)] 931 MeV/u
Q
= [ 0.011u] 931 MeV/u = 10.24 MeV
We
next seek to find the Q-value associated with the beta decay: for Beryllium 7
 4 Be 7    +    -1
e0 ®   3 Li 7     +  u
Where the respective atomic masses are:
4 Be 7    = 9.012182 u
3
 Li  7   = 7.016004 u
And
we use: c2 = 931.5 MeV/u 
Again,
                                    (total rest mass after
decay )] c2
Q
=  (1.996u) 931.5 MeV/u = 1859 MeV
Compressed
notation for nuclear decays:
 4Be 7 (-1 e0  , u) 3 Li 7     
a
+ X ®  Y + b
X
(a,b) Y
Q
= [Ma + MX  - MY
– Mb]c2
 3 Li 7 (p, a) 2 He 4
And
obtain the Q-value.
 We know the p denotes the proton of hydrogen
nucleus and a  is an alpha particle given off. We list the
nuclear masses as follows:
3
Li  7  
= 7.016004 u
p
=  1H 1
= 1.007825 u
a  =  2 He 4  = 
4.002603u
Then:
Q
= [Ma + MX  - MY
– Mb]c2   =
[7.016004 u + 1.007825 u - 4.002603u - 4.002603u] c2
[7.016004 u + 1.007825 u - 4.002603u - 4.002603u] c2
=
[8.023829 u -  8.005206 u] 931.5 MeV/u 
So:
Q = (0.018623 u) 931.5 MeV/u =17.3 MeV 
Problems:
1.Write
out the full nuclear reaction for:
13
Al
27 (a, n) 15 P 30
Thence,
or otherwise, find the Q of the reaction. 
2.
Identify the missing ‘X’ in each of the following:
a)
84 Po  215   ®  X + a
b)   N 14 (a, X)  O 17
c)
48 Cd 109   
+   X ®   47 
Ag 109     +  u
3.
Consider a process of neutron removal whereby:
20 Ca 43    ®   20 Ca 42     + 0 n 1     
We
wish to find the “separation energy” S n
associated with the neutron.  Estimate
the value of this energy if the atomic mass of Ca 43     = 42.98780u, and  Ca 42  = 41.958625u, and take the neutron
mass = 1.008665u.
4.
For each of the following reactions, write out the full nuclear equation and
find the Q of the reaction:
a)
H 2 (d, p)  H 3    (Note: d is for deuterium or 1
H 2 )
b)
Li 7 (p, n) Be 7
5.
Refer to the example of the fission of U 235 illustrated (Fig. 1)  at the outset of Part
1. This fission reaction may be written:
92U 235   +  0
n 1     ®  42 Mo 95     +   
57 La 139 + 2 (0 n 1)
Find
the Q-value of this reaction, given these atomic masses:
   0
n 1     = 1.009u
92U 235   = 235.123u
42 Mo 95   = 
94.945u
57 La 139   = 
138.955u
No comments:
Post a Comment