
1) C is the right hand half
of the circle  êz ê = 2 
from z = -2 i to z = 2 i. Hence we want to find the integral of: 
I
= òC  z* dz
For which
z = 2 exp (i q)  (- p/2
<   q  < 
p/2)
Then: 
I=  òp/2 -p/2  (2 exp(i q)) (2 exp(- i q)) 
dq  =  4i   òp/2 -p/2   dq
= 4 i(p/2  - (-p/2))
= 4i   (p)  =  4 pi
Note that for such a point z on the circle êz ê = 2 , it follows that zz* = 4 or z* = 4/z. So that the result 4 pi can also be written:
I
= òC  dz/ z = 
pi
2) We used the revised contour shown in the graphic which will consist of two parts: C1 and C2. For C1 we will have:
òC1  f(z) dz 
=   òOA  f(z) dz  +    òAB  f(z) dz  
And for C2:
òC2  f(z) dz 
=   òOC  f(z) dz  +   ò CB  f(z) dz   
Where
f(z) =  y – x   -i3x2   (z = x + iy)
The segment OA can be represented parametrically as:   z = 0 + iy (0 < y < 1) 
And since x = 0 at all points on that segment the values of
f there vary with the parameter y according to the equation:
Therefore:
ò OA  f(z) dz   =     ò 0 1   y idy = i ò 0 1   y dy = i/2
Meanwhile,
on the segment AB, z = x + i(0 < x < 1) so that:
ò AB  f(z) dz   =   
=     ò 0 1   (1 – x –i3x2) 1 dx = 
ò 0 1   (1 – x)dx 
–  3i ò 0 1    x2dx = ½ - i
Turning attention to contour C2: The segment OC can be represented parametrically as: 
z = 0 + ix (0 <
x < 1)
ò OC  f(z) dz     =     ò0 1   (x –i3x2) 1 dx 
Or:
ò 0 1   ( x)dx 
–  3i ò 0 1    x2dx = ½ - i
The vertical segment CB can be represented as: 
z = 0 + iy (0 < y < 1) 
And since x = 0 at all points on that segment the values of f there vary with the parameter y according to:
f(z) = y(0 < y < 1)
Therefore, we have:
ò CB  f(z) dz   =     ò 0 1   y idy = i ò 0 1   y dy = i/2
Then:   òOC  f(z) dz 
+    òCB  f(z) dz   =  ½ -
i + i/2  =  ½ - i/2
 
Finally:
òC1 f(z) dz - òC2 f(z) dz = ½ - i/ 2 - [½ - i/2] = 0
òC1 f(z) dz - òC2 f(z) dz = ½ - i/ 2 - [½ - i/2] = 0
Is this result surprising? It shouldn't be if you examine the contours in the diagram!
No comments:
Post a Comment