Friday, November 21, 2025

Development of the Mathematical Ballistics Model (Pt. 3)

The mathematical model more easily solved by our array of existing differential equations - as I noted in the Oct. 22 post- is given by the pair:

 (A)

 r''  -   q'2 =    cr-2 

And:

r' q'    +  q''     =  0

This is a system of 2nd order differential equations and the objective will be to solve for r as a function of t, r(t) and q  as a function of t,  q (t).   Elimination of t then results in r as a function of q.

Moving forward, if we multiply the 2nd equation by the integrating factor r, it becomes an exact differential, i.e.

2 rr' q' +   r-2 q''   =  d/ dt (r-2  q' ) = 0

Then an integration yields:

(B)   r-2  q'  =  k 1 = const.

Solving for q' and  substituting into the first equation of (A)   yields:

(C)

r"   -    k 1 2  /r-3   = -  c/ 2                                                 

Since:  r''  =   dr'/ dt = (dr'/ dt )(dr/ dt) = ( dr'/dt ) r'

Equation (C) can be changed to a variables separable form:

r' dr'  =  ( k 1 2  /r-3  -  c/ 2 ) dr

Which on integration yields:

 ½ r' 2 =   - k 1 2  r-2  + cr- 1  + K 1

Where we choose the arbitrary constant:

K 1  =  ½ ( k 2 2  -  c2 k 1 -2

To Simplify the final solution:

r' =   +Ö {( k 2 2  -  c2 )r-2  +  2k 1 2  cr -  k 1 4 }/ k r

Note that since:

  q=  k 1 -2   

 the quotient:

r'/q=  dr/dq  =

 +  r/k 1 2  Ö {( k 2 2  -  c2 )r-2  +  2k 1 2 cr -  k 1 4 }

yields a differential equation in which the variables are separable:

(D)

  k 1  dr/ r Ö {( k 2 2  -  c2 )r-2  +  2k 1 2 cr -  k 1 4 } = dq

The integral for the left hand side can then be found in a table of integrals for the form:

ò  dx / x Ö( A + Bx + Cx 2 ) =

 1/Ö -arcsin (Bx + 2A)/ x Ö (B 2 - 4AC  + K2

And for the specific problem under consideration:

A = -  k 1 4,   B =  2k 1 2 c ,    C = k 2 2  -  c2 

So that:

 Ö - = Ö - (-k 1 4 )  =  k 1 2 

Ö (B 2 - 4AC   =  Ö{4k1 4 c2  +  4k 1 4(k 2 2  -  c2 ) = 2k 1 2 k 2

And the solution for (D) is:

k 1 2k 2 arcsin (2k 1 2 cr - 2k 1 4 )/ r 2k 1 k 2   =   q  + K 3

Where  K 3 is another arbitrary constant of integration.

Simplifying:

cr -  k 1 2  =   k r sin ( q  + K 3)

or:

r  [c  -  k sin ( q  + K 3)]  = k 1 2

Solving for r:  

r =  k 1 2 /c -  k 2 cos (q  + k 3)

Where k 3 is a new constant based on:

(E)

sin ( q  + K 3)  =   cos ( q  + K p/2) = cos (q  + k 3)

Equation (E) is the geometric solution of the system of differential equations (A) and gives r as a function of q. This equation is the polar form of a conic with one focus at the origin.  There are three arbitrary constants that have been identified in this equation: k 1 ,  k 2 and k 3.  These will need to be evaluated in terms of the designated conditions of the model, and this will be done in the next instalment.







No comments: