Thursday, October 2, 2025

Solutions To Angular Momentum Applied To Orbital Motion Problems - Practical Astronomy Focus

The Problems:

1) Find the velocity of said geosynchronous satellite which matches Earth's rotation rate.

2) Verify the conservation of angular momentum applies for a spacecraft in orbit around the Earth if its velocity at perigee is  10.7 km/ sec, its distance from Earth at perigee is  6.6 x 10 3 km, its velocity at apogee is  0.75  km/ sec  and its distance at apogee is: 9.3 x 10 4 km.  Find the period of the spacecraft. 

Solutions:

1) To find the velocity:

v = w r  =  (2p/ T) r

= { 2p x 42.4 x 106 m} / 86400 s.

v = 3100 m/s

2) For conservation of angular momentum L in an elliptical orbit (with ra  the radius vector at aphelion,  and  with rp the radius vector at perihelion)

 L = mva ra =  mvp rp

Or: va ra =  vp rp

va ra =    (0.75  km/ sec) (9.3 x 10 4 km) » 7.0 x 10 4 km2/sec

vp rp =    (10.7 km/ sec) (6.6 x 10 3 km)

 » 7.0 x 10 4 km2/sec

Given:  va ra »  vp rp

To within the limits of errors, the principle of angular momentum conservation  is validated.

The period is obtained from: T = 2π (a3/m)½

Where 
 = G (m1 + m2) 


And:  a = [
ra +  rp ] /2 =  (9.3 x 10 4 km + 6.6 x 10 3 km)/2 »

= (9.3 x 10 7 m + 6.6 x 10 6 m)/2 » 4.9 x 10 7 m

»

2π [(4.9 x 107 m)3/[6.7 x 10-11 Nm2/kg2) (6.0 x 1024 kg)]½

» 4.3 x 10 4 s » 12.2 hrs.


No comments:

Post a Comment