Friday, August 22, 2025

More Plasma Physics: Looking At Nonlinear Electrostatic (BGK) Waves (Part III)

 Case 2 - Application to ion-acoustic solitons and shocks:

Take:

v eo  =  v io  u o

 And:  Electron, ion streaming at same speed, i.e.

Ti= 0,  Te  ≠ 0

Electron thermal speed: 

v eo 2 =   2T/me

Ion sound speed:  cs 2  = T/mi

We can then write:

n i  =  n o /Ö 1 -  2e /mi uo2 

With electron distribution function:

s  ~  n  =    n so2  -   2e j  /me oe2  )

Making assumption:   

uo < <  oe2

We get for the number density:

n  =    n o  exp [e j  /Te ]

Note: Boltzmann distribution, given:

exp ( 2e j  /me oe2 )   =    exp [e j  /Te ]

Therefore:  

d 2jd x2    =  p  e (e – i) = 

p  n e (exp [e j  /Te ]  - 1 /Ö 1 -  2e /mi uo2 ) 

We now seek to reframe this equation non-dimensionally using:

F = e j/ Te

Proceeding:

{2 j/ Te }/mi uo2 / Te)   =    2F / uo2 /  cs 2  =   F/2


Where s  is the sonic shock number.

Then:

p  n e (exp [e j  /Te ]  - 1 /Ö 1 -  2e /mi uo2 )   =

p  n e (exp [F]  - 1 /Ö 1 -  F/2 ) 

Whence:  

d 2d x2  {exp [e F /Te }  =  p  n 2/Te [exp [F]  - 1 /Ö 1 -  F/2 ]

Or:

d 2jd x2    =   1/l e   [exp [F]  - 1 /Ö 1 -  F/]

We have in summary:

F = e j/ Te  ,  x =  x/ le    And:   s  =   uo cs


Then:   2 F/ d x 2  =   exp (F) -  1Ö(1 – (2 e F)/ (M )2  =    -   y j 

Which is the dimensionless Poisson equation

Where:   Y  =  exp (F) - 1/ Ö(1 – (2 e F)/ M 2)  +  C

We require for self-consistent solutions:

1)  y   (F =0)  =  0       Þ    C  =  1 +  2

2)  d d F f =0     < 0

3) y  (F c >  0

Which leads to:  1  -   exp [2 /2]    +  2   >  0

Hence:    

  <  1.6

Thus for a soliton (shock) solution associated with case 2 to exist:

1   <    s    <  1.6

No comments:

Post a Comment