Friday, August 8, 2025

More Plasma Physics: Looking At Nonlinear Electrostatic (BGK) Waves - Part I

The putative basis for BGK (Bernstein- Greene-Kruskal mode) waves in the wave frame is the 1D Vlasov equation, e.g.

 f  x  - q s /m s [ je x  ·  f s v]  = 0

Where s   is any function of the constant of the motion for particles species s.  And q s ,  m s  refer respectively to the charges and masses for plasma species s.

We expect the solution to be a function of velocity and potential, i.e. f (v, j)

With general solution:

s  =  s  (2   +    2q s j  /m s -  s2  )

 With no magnetic field present, the only Maxwell equation we need is Poisson's  e.g.

  2j x2    =   - 4 p e (e – i) =     - 4 p r

For the Poisson equation one obtains the graph below as one "double layer"  solution to the potential equation:

        Solution to the potential equation for cold streaming plasma: electric potential vs distance  (x)

The applicable constant of the motion (total energy) is:

 e m s   =  2   +    2q s j  /m s -  s2 

Where  is the streaming velocity.

Cases to consider: 

1)  Cold, electron-ion streaming plasma,

2) Ion-acoustic solitons and shocks,


 We examine case (1) first for which:

s  =  A n so  (2   +    2q s j  /m s vs2  )

Where A is a normalization constant,

n so  is n s  the particle species number density at locations where the potential:

j  = 0.

 s  is the streaming velocity at j  = 0.

Where:  <  vs >] f=0 s

   To get A we first integrate:

  n  =   ò -¥ ¥  s  dv      

Þ

 A n so / 2v   

Evaluated at: v =  Ö vs 2   -    2q s j  /m s

Whence:   n  =    n so / 2Ö vs 2   -    2q s j  /m s

Expression for number density at any potential j .

Then:    n s (j  = 0)   =  n so   =   n so / 2  vso 

Þ

A  =  2  vso 

Then the distribution function becomes:

s  =  2 v so n so  (2   +    2q s j  /m s -  vso2  )

And:

n s  =  n so  vso /Ö (vso 2   -    2q s j  /m ) =  

n so  / Ö (1 - q s j  /½m s vso2  )

By the continuity equation:

a) n s  vs =  const.  =   n so  vso 

And the momentum equation:

b) m s  ns    dvs  / dt  =   q s  nE  =   -q s n j x

Also:

c)  ½m s vs2   + q s j  =  const.  = ½m s vso2 

Problem:

Combine equations (a), (b) and (c) above to obtain an equation for  ns  in terms of:  vso ,     n so   and  q s j .


To be continued...


No comments:

Post a Comment