We want to divide: z1 = -2 + 2i by z2 = -2 - 3i
We graph each of these first on an Argand diagram (graph) to obtain the respective angles q1 and q2.
Then: let A = z1 and B = z2
arg(z1 ) = arctan (y1/x1) =
arctan (y1/x1) = arctan (-2/2) = arctan (-1) = - 45 deg
So q1 = - 45 deg
arg(z2) = arctan(y2/x2) = arctan(-3/ - 2)
= arctan(3/ 2) = 56.3 deg
so q2 = (56.3 deg)
And (by Pythagoras) r2 = Ö (x2 2 + y2 2 )
= Ö (-2) 2 + (-3) 2 = Ö(4) + (9) = Ö 13 = 3.6
Now z1 and z2 may be written respectively:
z1 = 1.41 cos (-45) + i sin (-45) = 1.41 cis (-45)
z2 = 3.60 cos (56.3) + i sin (56.3) = 3.60 cis (56.3)
We may now proceed with complex division, i.e.:
(z1/z2) = (r1 cis(q1)/ r2 cis(q2)) = (r1/ r2) cis (q1 – q2)
Where: (r 1/r 2) = 1.41/ 3.60 = 0.39
And: (q1 – q2) = arg(z1) – arg(z2) = (-45) – (56.3) = -101.3
Finally: (z1/z2) = 0.39 cis (q1 – q2) =
0.39 cos (-101.3) + i sin (-101.3)
= 0.39 [(- 0.195) + i (-0.98)] = - 0.07 + 0.38 i
No comments:
Post a Comment