Monday, June 30, 2025

Solutions To Complex Numbers In Polar Form (Part 2) Problem

 We want to divide: z1  = -2 + 2i by z2  = -2 - 3i





We graph each of these first on an Argand diagram (graph) to obtain the respective angles q1  and   q2.

Then: let A = z1    and B =  z2       

arg(z1 ) = arctan (y1/x1)  =

arctan (y1/x1) = arctan (-2/2) = arctan (-1) = - 45 deg

 So q1 = - 45 deg

arg(z2) = arctan(y2/x2) =  arctan(-3/ - 2)  
=  arctan(3/ 2) = 56.3 deg

 so q2 = (56.3 deg) 

And (by Pythagoras) r2  =  Ö (x2 2  +  y2 )

Ö (-2) 2  +  (-3) 2   = Ö(4) + (9) = Ö 13  = 3.6

 Now  z1  and z2  may be written respectively:

z1 = 1.41 cos (-45) + i sin (-45) = 1.41 cis (-45)

z2 = 3.60 cos (56.3) + i sin (56.3) = 3.60 cis (56.3)

We may now proceed with complex division, i.e.:

(z1/z2) =  (r1 cis(q1)/ rcis(q2)) = (r1/ r2) cis (q1 –  q2)

Where:  (r 1/r 2) = 1.41/ 3.60  =   0.39

And(q1 – q2)   = arg(z1) – arg(z2) = (-45) – (56.3) = -101.3

Finally: (z1/z2) =  0.39 cis (q1 –  q2) =

 0.39 cos (-101.3) + i sin (-101.3) 

= 0.39 [(- 0.195) + i (-0.98)]  =  - 0.07 + 0.38 i


No comments:

Post a Comment