Tuesday, June 3, 2025

Solution To Mensa Unit Circle Algebra Problem


Ans.  There are infinitely many rational coordinate pairs that satisfy the unit circle equation.

Proof: Let x = a /b, and y = c/d

Also: b     0,      0

2    +    y 2  =  1

=>    2    =   1 -     y 2 

 2    =   1 -  (c/d) 2   = (d 2 - c 2)/ d 2

Since:

2    =   (d 2 - c 2) / d 2


Then  (d 2 - c 2)   must be a perfect square.

For simplicity, let:
 
e 2   =  (d 2 - c 2)

è c 2  + e 2 =  d 2

Then: c-e-d is a Pythagorean triple.  Because there are an infinite number of Pythagorean triples:

c-e-d (d > c, e)

There are an infinite number of rational coordinate pairs:

/d2),   e 2 /d2)

that satisfy the unit circle equation.





No comments:

Post a Comment