Problem:
Solve using variation of parameters:
y" - y = x 2
Solution:
The complementary function is:
y c = c 1 e x + c 2 e -x
Let c 1 , c 2 be functions of x, i.e.
y p = c 1 (x) e x + c 2 (x) e -x
Differentiate to obtain:
y'p = c 1 e x - c 2 e -x + c '1 e x + c' 2 e -x
Impose the condition that:
c '1 e x + c' 2 e -x = 0
With this condition imposed on y'p differentiate again to get:
y''p = c 1 e x + c 2 e -x + c '1 e x - c' 2 e -x
Substitute eqns, for y''p and y p back into original complementary function eqn. to get:
c 1 e x + c 2 e -x + c '1 e x - c' 2 e -x - c 1 e x - c 2 e -x = x 2
Simplifying:
c '1 e x - c' 2 e -x = x 2
We now have two equations, in c '1 and c '2 that form a linear system to be solved, i.e.
1) c '1 e x + c' 2 e -x = 0
2) c '1 e x - c' 2 e -x = x 2
Whence:
d c 1 / dx = ½ x 2 e -x
Or: d c 1 = ½ x 2 e -x dx
Integrate to get:
c 1 = - ( 1 + x + ½ x 2) e -x
from eqn. (1) in the linear pair we get:
c' 2 = - c' 1 e 2x = - ½ x 2 e x
and:
c 2 = - ( 1 + x + ½ x 2) e x
The general solution is then:
y =
(c 1 + x - ½ x 2) e x + (c 2 - x - ½ x 2) e -x
No comments:
Post a Comment