Friday, May 16, 2025

Solution To Variation of Parameters Differential Equation

 Problem:  

Solve using variation of parameters:

y"  - y  =  2


Solution:

 The complementary function is:

c  = x +  c 2  -x

Let  ,  c    be functions of x, i.e.

p    = 1 (x) x +  c 2 (x)  -x

Differentiate to obtain:

y'p  =  x -  c 2  -x  +  c 'x +  c' 2  -x

Impose the condition that: 

    c 'x +  c' 2  -x  = 0

With this condition imposed on  y'p  differentiate again to get:

y''p  =  x +  c 2  -x    +  c 'x -  c' 2  -x

Substitute eqns, for  y''p  and p    back into original complementary function eqn. to get:

x +  c 2  -x  +  c 'x -  c' 2  -x   -  c x -  c 2  -x    2

Simplifying:  

 c 'x -  c' 2  -x   = 2

We now have two equations, in c '  and c '2  that form a linear system to be solved, i.e.

1) c 'x +  c' 2  -x  = 0

2)  c 'x -  c' 2  -x   = 2

We add these two equations to obtain:

2 c 'x 2

Whence:

1 / dx    ½ x -x 

Or:  1   ½ x -x dx

Integrate to get:

1   - ( 1  +   x  +  ½ x 2) e -x 

from eqn.  (1) in the linear pair we get:

 c' 2    =  -  c' 1  2x        -  ½ x x

and:

2   - ( 1  +   x  +  ½ x 2) e 

The general solution is then:

   =  

(c 1  +   x  -  ½ x 2   + (2  -  x  -  ½ x 2) e -x


No comments: