1) Given the function: u(x,y) = x3 – 3xy2
Show the function is harmonic on the entire complex plane.
Solution: The Cauchy- Riemann equations are:
And also: ¶ 2 u/ ¶ x2 = 6x And: ¶ 2 u/ ¶ y2 = - 6x
Since: ¶ 2 u/ ¶ x2 + ¶ 2 u/ ¶ y2 = 6x + (-6x) = 0
It’s clear the function is harmonic on the entire complex plane.
hen, we can differentiate both sides of (a) with respect to x, and (b) with respect to y to obtain:
1) ¶ 2 u/ ¶ x2 = ¶ 2 v/ ¶ x ¶ y and
2) - ¶ 2 u/ ¶ y2 = ¶ 2 v/ ¶ y ¶ x
2) Given the function: u(x.y) = exp(-x) [x sin y – y cos y]
a) Show u(x,y) is harmonic
b) Find v(x,y) such that f(z) = u + iv is analytic
Solution:
a) ¶ u/ ¶ x = exp(-x) (sin y) + (-exp(-x)) [x sin y – y cos y]
= exp(-x) (sin y) - x exp(-x) sin y + y (exp(-x) ) cos y
¶ 2 u/ ¶ x2 = ¶ / ¶ x [exp(-x) (sin y) - x exp(-x) sin y + y (exp(-x) ) cos y]
= -2 exp(-x) sin y + x exp(-x) sin y - y (exp(-x) ) cos y
A Also: ¶u/ ¶ y = exp (-x) (x cos y + y sin y – cos y) =
x exp (-x) cos y + y (exp(-x) sin y - exp(-x) cos y
¶ 2 u/ ¶ y2 = ¶ / ¶ y [x exp (-x) cos y + y (exp(-x) sin y - exp(-x) cos y]
= - x exp(-x) sin y + 2 exp(-x) sin y + y (exp(-x) ) cos y
So that: ¶ 2 u/ ¶ x2 + ¶ 2 u/ ¶ y2 = 0
And the function u(x,y) is harmonic
Integrate (a) with respect to y, keeping x constant so that:
v = - exp(-x) cos y + x exp (-x) cos y - exp(-x)[ y sin y + cos y) + F(x)
v = y exp(-x) sin y + x exp(-x) cos y + F(x)
Here, F(x) is an arbitrary real function of x.
Substituting the last result for v into the Cauchy equation for
¶ v/ ¶ x we get: y exp(-x) sin y – x exp(-x) cos y + exp (-x) cos y + F’(x)
¶ v/ ¶ x we get: y exp(-x) sin y – x exp(-x) cos y + exp (-x) cos y + F’(x)
= - y exp (-x) sin y – x exp (-x) cos y – y exp(-x) sin y
Or: F’(x) = 0 and F(x) = c (constant)
Then, from the earlier expression for v: v = exp (-x) (y sin y + x cos y) + c
a) ¶ u/ ¶ x = exp (x) cos y
And: ¶ v/ ¶ y = exp (x) cos y so: ¶ u/ ¶ x = ¶ v/ ¶ y
SO the function is analytic for u.
Now, ¶ v/ ¶ x = exp(x) sin y and : - ¶ u/ ¶ y = - exp (x) [- sin y] = exp(x) sin y
SO: ¶ v/ ¶ x = - ¶ u/ ¶ y
Therefore, the function is also analytic for v.
b) ¶ 2 u/ ¶ x2 = ¶ / ¶ x [ exp (x) cos y ] = exp (x) cos y
¶ 2 u/ ¶ y2 = ¶ / ¶ y [- exp (x) sin y ] = - exp(x) cos y
Then:
¶ 2 u/ ¶ x2 + ¶ 2 u/ ¶ y2 = exp (x) cos y + (- exp(x) cos y) = 0
So the function is harmonic for u.
Looking now at v:
¶ 2 v/ ¶ x2 = ¶ / ¶ x [exp(x) sin y ] = exp(x) sin y
¶ 2 v/ ¶ y2 = ¶ / ¶ y [exp (x) cos y ] = exp (x) [- sin (y)]
= - exp (x) sin y
= - exp (x) sin y
Then: ¶ 2 v/ ¶ x2 + ¶ 2 v/ ¶ y2
= exp(x) sin y + (- exp (x) sin y) = 0
= exp(x) sin y + (- exp (x) sin y) = 0
So the function is also harmonic for v.
No comments:
Post a Comment