Tuesday, February 18, 2025

Solutions To Cauchy-Riemann Problems

 1)     Given the function: u(x,y) = x3 – 3xy2

 
Show the function is harmonic on the entire complex plane.

Solution:  The Cauchy- Riemann equations are:

     ¶ u/  x  =   3 x2 – 3y2            u/  y     =  - 6xy

 
And also:    2 u/  x2  =   6x     And:   2 u/  y2  =   - 6x
 
 
Since:     2 u/  x2  +   2 u/  y2    =  6x + (-6x) = 0

 
It’s clear  the function is harmonic on the entire complex plane.



hen, we can differentiate both sides of (a) with respect to x, and (b) with respect to y to obtain:

1)  2 u/  x2  =     2 v/  x   y    and

2)   2 u/  y2  =     2 v/  y   x  

 
2)     Given the function: u(x.y) = exp(-x) [x sin y – y cos y]

a)     Show u(x,y) is harmonic

b)     Find v(x,y) such that f(z) = u + iv is analytic

Solution:

a)  u/  x  =   exp(-x) (sin y) +  (-exp(-x)) [x sin y  – y cos y]
 
       = exp(-x) (sin y) -  x exp(-x) sin y + y (exp(-x) ) cos y
 
       ¶ 2 u/  x2    =    /  x  [exp(-x) (sin y) -  x exp(-x) sin y +  y (exp(-x) ) cos y]
 
    =  -2 exp(-x) sin y + x exp(-x) sin y - y (exp(-x) ) cos y
 
 
A         Also:  u/  y  =    exp (-x) (x cos y + y sin y – cos y) =
 
               x exp (-x) cos y + y (exp(-x) sin y -  exp(-x)  cos y

 
              ¶ 2 u/  y2    =   /  y [x exp (-x) cos y + y (exp(-x) sin y -  exp(-x)  cos y]
 
                  = -  x exp(-x) sin y  + 2 exp(-x) sin y +  y (exp(-x) ) cos y
 
                 So that:  2 u/  x2  +   2 u/  y2    =   0
 
                     And the function u(x,y) is harmonic

b)   u/  x  =    exp(-x) (sin y) -  x exp(-x) sin y + y (exp(-x) ) cos y =   v/  y 

  -  u/  y  = - x exp (-x) cos y -  y (exp(-x) sin y +    exp(-x)  cos y  =   v/  x 
 
Integrate (a) with respect to y, keeping x constant so that:

v  =  exp(-x) cos y + x exp (-x) cos y   exp(-x)[ y sin y + cos y) + F(x)

v =  y exp(-x) sin y + x exp(-x) cos y + F(x)

Here, F(x) is an arbitrary real function of x.

Substituting the last result for v into the Cauchy equation for
  v/  x   we get:   y exp(-x) sin y – x exp(-x) cos y + exp (-x) cos y + F’(x)

=   - y exp (-x) sin y – x exp (-x) cos y – y exp(-x) sin y

 
Or: F’(x) = 0  and F(x) = c (constant)  

Then, from the earlier expression for v:   v =   exp (-x) (y sin y + x cos y) + c

 
3) Let f(z) = exp(x) cos(y) + i(exp(x)sin(y) = u(x,y) + iv(x,y)

a) Determine if the function is analytic for both u and v.

b) Determine if the function is harmonic for both u and v.

Solutions:

a)    u/  x  =     exp (x) cos y  

 
And:  v/  y    =    exp (x) cos y    so:   u/  x  =     v/  y   

 
SO the function is analytic for u.

 
Now,   v/  x  =  exp(x) sin y  and :  u/  y  =     exp (x) [- sin y] =  exp(x) sin y

 
SO:   v/  x  =    u/  y 

 
Therefore, the function is also analytic for v.

 
b)  2 u/  x2    =     /  x  [ exp (x) cos y ] =  exp (x) cos y

 
 2 u/  y2    =       /  y  [-  exp (x) sin y ]  =   - exp(x) cos y

 
Then: 
 2 u/  x2      +   2 u/  y2    =  exp (x) cos y +  (- exp(x) cos y) = 0

 
So the function is harmonic for u.

 
Looking now at v:

 
 2 v/  x2    =     /  x  [exp(x) sin y ]  =  exp(x) sin y

 
 2 v/  y2    =    /  y   [exp (x) cos y ]  =  exp (x) [- sin (y)]

exp (x) sin y

 
 Then:  2 v/  x2      +   2 v/  y2   

=  exp(x) sin y +  (exp (x) sin y) = 0

 
So the function is also harmonic for v.

 

No comments: