Problem:
1) A space plasma with electron number density 10 12 /cm 3
features a magnetic field of 0.0001 T (Tesla).
Find:
a) the electron plasma frequency,
b) the cyclotron frequency and c) the hybrid frequency.
d)Thence or otherwise find the refractive index of the plasma and whether ordinary or extraordinary wave propagation can be expected.
Solutions:
a) The electron plasma frequency:
w e = [ne e2/ me εo] ½
Where: ne = 10 12 /cm 3 = 10 18 /m 3
e = 1.6 x 10-19 C
me = 9.1 x 10-31 kg
ε o = 8.85 x 10-12 F/m
Then:
w e =
[10 18 m-3 (1.6 x 10-19 C) 2 /9.1 x 10-31 kg (8.85 x 10-12 F/m)] ½
w e = 5.63 x 10 10 c/s
b) The cyclotron frequency:
w c = qB/ m e
Where: q = e = 1.6 x 10-19 C
B = 0.0001 T
me = 9.1 x 10-31 kg
Then: w c = (1.6 x 10-19 C) 0.0001 T /9.1 x 10-31 kg
= 1.76 x 10 7 c/s
c) The hybrid frequency
w H 2 = w e 2 + w c 2
Or: w H = [ w e 2 + w c 2 ] ½
w H = [ (5.63 x 10 10 c/s) 2 + (1.76 x 10 7 c/s) 2 ] ½
w H = 5.63 x 10 10 c/s
The refractive index of the plasma can only apply to the ordinary wave since:
For the extra ordinary wave: n x 2 = 1 - X / ( 1 - Y)
But: X = w e 2 / w 2 and Y = w H 2 / w 2
However, on computation we find:
w e » w, w H » w = 5.63 x 10 10 c/s
So: X = 1 and Y = 1 whence:
n x 2 = 1 - X / ( 1 - Y) = 1 - 1/ (1 - 1) = 1 - 1/0
So: n x = [1 - ¥] ½ So indeterminate
But for the ordinary wave:
n o 2 = 1 - X / ( 1 + Y)
So: n o = [1 - 1/ 1 + 1] ½ = [1 - 1/ 2] ½
n o = [1/ 2] ½
n o = Ö 2 / 2 = 0.707
No comments:
Post a Comment