1) Evaluate: 5 x4 + 4 x3 + 6 x2 + 2x + 2
At x= 1.2, in 2 ways
Solutions:
a a) 4
multiplications, 4 additions,
(((5x + 4)x
+ 6)x + 2) x+ 2) =
(((5(1.2) + 4)1.2 + 6)1.2 + 2) 1.2 + 2)= 30.23
b)10 multiplications, 4 additions
5·x·x·x·x + 4·x·x·x + 6·x·x + 2·x + 2
= 5·(1.2)·(1.2)·(1.2)·(1.2)
+ 4·(1.2)·(1.2)·(1.2) +
6·(1.2)·(1.2)
+ 2·(1.2) + 2
= (10.368) + 6.912 + 8.64 + 2.4 + 2 = 30.23
2)Check to see if the series:
å ¥ n = 1 2n (x + 5)n /n 2
Converges.
Solution:
Applying ratio test:
lim n® 0o ÷ 2n+1 /n+1 (x + 5)n+1 ÷
----------------------------------------
÷ 2n /n 2 (x + 5)n ÷
= lim n® 0o (n/n+1) 2 2÷ x + 5÷ = 2÷ x + 5÷
So this series will converge for those values of x for which:
2÷ x + 5÷ < 1
or: ÷ x + 5÷ < 1/2
This is the interval of convergence, with R = ½ the radius of convergence
Challenge Problem:
Use the
Taylor series to 4th order (n = 4 or
P 4) to obtain the value of
Ö 5
Solution:
To order 4:
P n == f(4) + f ’(4) × (x – 4) + f ” (4)/ 2! (x – 4)2 +
….+ f ”’ (4) / 3! (x – 4)n + f iv (4)/ (4)! [(x- 4) 4]
The function of interest is: f(x) = x 1/2
The derivatives are:
f ’(x) =
½ x -1/2
f ’’(x) = -1/4 x -3/2
f ’’’(x) = -3/8 x -5/2
f iv (x) = -15/16 x -7/2
For n = 4 we have f(x) = Ö 4 = 2
Therefore: Since (x - 4) = (5 –
4) = 1
P 4 = f(x) + f ’(x) +
f ’’(x)/2! +
f ’’’(x)/3! + f iv (x)/4!
= 2
+ ½ x -1/2 + (-1/4 x -3/2 )/2! + (3/8 x -5/2 ) /3! +
(-15/16 x -7/2)/ 4!
Substituting
order value (4):
P 4 = f(4) + f ’(4) +
f ’’(4)/2! +
f ’’’(4)/3! + f iv (4)/4!
= 2
+ ½ (4) -1/2 + (-1/4 (4) -3/2 )/2! + (3/8 (4) -5/2 ) /3! +
(-15/16 (4) -7/2)/ 4!
Then:
P 4 = 2 + 0.25000 + (-0.01563) + 0.00195 + (-0.00183)
=
2.23602
Compared
to table value of 2.23606
No comments:
Post a Comment