Friday, June 16, 2023

Solution To Maxwell Equation Derivation Problem

 Problem: 

Starting with the Maxwell vector equation:

Ñ x E  =  - B /  t

Derive the wave equation in terms of E.

Solution:

We can start with: Ñ x E  - B / t 

Take  the curl of both sides::

Ñ x  Ñ x E      Ñ x  (-B / t)

And:

-Ñ x  (B / t) =  -Ñ X   (m H / t) = - m(Ñ x  H / t)

But by Maxwell’s first equation: Ñ X H  D / t 

Therefore:

Ñ x (H / t)  = 2 D / te 2 E / t

Then:

-Ñ x  (B / t) =  - me 2 E / t

 Whence:

Ñ x  Ñ x E  =   - me 2 E / t

But by a vector identity:

Ñ x  Ñ x E    Ñ · Ñ ·E -   Ñ 2 E

But:   Ñ ·E =    1/ mo (Ñ ·D) = 0

Since: (Ñ ·D) = 0  (No charges)

Then: Ñ · Ñ ·E  = 0 

So:   -   Ñ 2 E   =    -m ε  (2 E / t2

Or: Ñ 2 E   =    mo εo (2 E / t2

Writing out all component wave eqns.:

 2x  /  x2  =   moε ¶ 2 x /  t2

 2y  /  x2  =   moε 2 y /  t2

 2z  /  x2  =   moε 2 z /  t2



No comments:

Post a Comment