Problem:
Starting with the Maxwell vector equation:
Ñ x E = - ¶B / ¶ t
Derive the wave equation in terms of E.
Solution:
We can start with: Ñ x E =
= -
¶B / ¶ t
Take the curl of both sides::
Ñ x Ñ x E = Ñ x (-¶B / ¶ t)
And:
-Ñ x (¶B / ¶ t) = -Ñ X (m ¶H / ¶ t) = - m(Ñ x ¶H / ¶ t)
But by Maxwell’s first equation: Ñ X H = ¶D / ¶ t
Therefore:
Ñ x (¶H / ¶ t) = ¶2 D / ¶ t2 = e ¶2 E / ¶ t2
Then:
-Ñ x (¶B / ¶ t) = - me ¶2 E / ¶ t2
Whence:
Ñ x Ñ x E = - me ¶2 E / ¶ t2
But by a vector identity:
Ñ x Ñ x E = Ñ · Ñ ·E - Ñ 2 E
But: Ñ ·E = 1/ mo (Ñ ·D) = 0
Since: (Ñ ·D) = 0 (No charges)
Then: Ñ · Ñ ·E = 0
So: - Ñ 2 E = -m ε (¶2 E / ¶ t2)
Or: Ñ 2 E = mo εo (¶2 E / ¶ t2)
No comments:
Post a Comment