(11) Ö(2 xy) (dy/dx) = 1
Ö(y) dy
= dx/ Ö(2 x)
Integrate:
y 3/2 / 3/2 = Ö2 Ö(x)
2 y 3/2 = 3 (Ö2 ) Ö(x)
Then:
y 3/2 = 3 Ö x /2 + c
2) sin x (dx/dy) + cosh (2y)
= 1
ò
sin x dx + ò cosh (2y) dy = 1
ð - cos x + sinh
2y /2 = c
ð - 2 cos x + sinh
2y = c
3) ln x (dx/dy) = x/y
Separate variables:
ln x dx =
(x/y) dy
dy/y = ln x dx/x
Integrate:
ò dy/y
= ln x
ò dx/x
ln
y = ln x ln x + c
ln | y |
+ c =
½ ln | x
2 |
4) dy/dx = exp (x) (exp(-y)
=> dy/ exp (-y) = exp (x) dx
ò
exp (y) dy = ò exp (x) dx
exp (y) = exp (x) + C
5) Find the particular solution of:
x dx + y dy = 0; for y = 2 when x = 1
ò
x dx + ò
y dy = 0
x 2/2 + y 2 /2 = c
or:
x 2
+ y 2 = r
2
= 2c
Where r 2 = 2c is the constant of integration.
The solution then is the equation of a circle with the center at the origin and radius r.
For particular soln. use: y= 2, when x = 1
12 + (2) 2 = 5
So the particular solution is:
x2 + y 2 = 5
No comments:
Post a Comment