Solve using variation of parameters:
d2y/dx 2
- dy/ dx - 2y = e 3x
Solution:
This is a 2nd order DE so write the complementary
function:
y c
= c 1 e -x + c 2 e 2x
Assume:
yp
= v 1 e -x
+ v 2 e 2x
Then:
y1
= e -x , y 2 = e 2x , f (x) = e 3x
Therefore:
a) v ‘1 e -x
+ v’ 2 e 2x = 0
b) v ‘1 (-e -1) + v’ 2 (2e 2x ) = e 3x
Then we solve the above simultaneous
eqns. to get:
v’1
= e -4x/3 , v’2 = e x/3
From which we obtain:
v’1 = e -4x/12 v’2 = e x/3
The procedure entails replacing the arbitrary
constants c 1 , c 2
in the complementary function by the respective functions v 1 and v 2 which will be
determined. So the resulting function: v 1 y 1 + v 2 y 2
will be a particular integral of:
a o (x) y” + a 1
(x) y’ + a 2
(x) y = b(x)
Substitute into the original eqn:
yp
= v 1 e -x
+ v 2 e 2x
yp = - e 4x e -x /12 + e x e-2x/3
=
- e 3x/12 + e-3x/3
= e-3x/4
Yielding the general soln.
y = c 1 e -x + c 2 e 2x + e-3x/4
No comments:
Post a Comment