Given:
I = ò¥o sin tx sin ax dx/ (x2 + b 2) a > 0, b >
0
We have the actual
integral for the Fourier sine transform
Or we can write:
I = ½ ò¥o sin tx sin ax dx/ (x2 + b 2) (b > 0 )
We then apply the identity:
sin tx sin ax = ½ [cos x(t – a) – cos x(t + a)]
= ½ Re [ e ix(t-a) - e ix(t+a) ]
Thence:
I = ¼ Re ò¥-¥ [ e ix(t-a) - e ix(t+a) ]dx / (x2 + b 2)
= ¼ Re [I1 - I2 ]
Where:
I1 = ò¥-¥ e ix(t-a) dx / (x2 + b 2)
I2 = ò¥-¥ e ix(t+a) dx / (x2 + b 2)
Suppose t > a, then: e imx => m= (t –
a)
So m >0
yields the contour in upper half plane, i.e.
Then singular points occur at + ib, but we use only ib in y > a
Hence:
I1 = 2 pi(e iz (t-a) / 2 z = 2 pi(e -b (t-a) / 2 ib
= p/b ( e -b (t-a)
) if t
>a
Suggested Problem:
Obtain the relevant expressions for I2 if t < a and I1 if t = a, then the expression for all results (t> a, t = a, t < a) incorporated together.
No comments:
Post a Comment