1) (a) Sketch the catenary: y = 3 cosh (x/2 - ¼)
(b) If u2  is the parallel  u2 =0.5  and h' =   c / Ö(u 2) 2  -  c2 
Compute the mean curvature H if:
H = -½ (h' / [ u 2(1 + h' 2)1/2 ] + [h' / [ u 2(1 + h' 2)3/2 ])
Solution:
(b) The form is:  f(x) = a cosh (bx - c)
Then from the graph:  a= 3, b =1/2,   c = ¼
h' =   c / Ö(u 2) 2  -  c2   =   0.25 /Ö(0.5) 2  -  (0.25)2
h' = 0.25 /(0.5)  -  (0.0625)=   0.571
  H = -½ (h' / [ u 2(1 + h' 2)1/2 ] + [h' / [ u 2(1 + h' 2)3/2 ])
= -½ (0.571 / [ 0.5 (1 + (0.571) 2)1/2 ] + [0.571/ [ 0.5 (1 + (0.571) 2)3/2 ])  =   -0.87  
c) K  + h / 2H  =  k u
But: K  = h = +1   So:   k u  =  2/ 2(-0.87)  =  -1.15
(2) Using a quantitative approach find a representation of the right helicoids which are isometric to a catenoid.
Hint: You may use:  (u1) a cosh (x3 /a ) as the representation of the meridian of the catenoid.
Solution:
If (u1) a cosh (x3 /a  ) represent the meridian of the catenoid then we can write;
x ( u1 ,  u 2 ) =  (u 2 cos u2 , u 2 sin u2 , a cosh-1 (u2/ a)
ds2   =   (u 1 )3/2  / (u 1) 2  -  a2  (du1) 2/ a)  +  (u1)2(du2)3
Further:   1 + h' 2    =  (u 1)3/2  / (u 1) 2  -  a2
If  we use the appropriate substitution the left- hand side of the preceding eqn. becomes:
h4 (u 1)2 / h2 [(u 1) 2  +  c 2 ] - a2 
Finally integrate, setting  h = 1 and  a2  -   c 2 =  k2        :
k ò  Ö{((u 1) 2  +  c 2)/(u 1) 2 (u 1) 2 -  k2 } du1. 
Which yields, provided c = a:
x ( u1* ,  u 2* ) =  (u 2* cos u2* , u 2* sin u2* , cu2* )
Where each asterisked quantity (*) denotes an arc length, e.g. on S* which is the same as that for the inverse image on the surface S. Hence, enabling a length -preserving or isometric mapping.   In this case, as the pitch increases (for c= a)  we obtain the right helicoid.  This shows that a catenoid, cut along a meridian, can be deformed into a right helicoid. See below:


 
No comments:
Post a Comment