1) P m ℓ (cos q ) = - 3/ 2 sin q (5 cos 2 q - 1 )
If m =   1  and  ℓ = 3, show that the function is accurate.
Soln.: We may use:
Soln.: We may use:
P ℓm (q )  =  (-1 ) m  sin m q   d (m) [P ℓ   (cos q )]  / d (cos 
For  ℓ  =3  and  m = 1 ,  so:
P ℓm (q )  =   (-1 ) 1  sin 1 q   d (1) [P 3   (cos q )]  / d (cos 
 And:  P 3   (cos q )  =  1/2  (5 cos 2 q  -  3 cos  q) 
Hence  take: z  =  cos q  and substitute, viz :
d/ dz [P 3 (z)] = d/ dz (5 z 2/2 - 3z /2 )
è
P ℓm (q ) = (-1 ) sin q (5 cos 2 q - 3/2)
= - 3 sin q/ 2 (5 cos 2 q - 1) = - 3/ 2 sin q (5 cos 2 q - 1 )
d/ dz [P 3 (z)] = d/ dz (5 z 2/2 - 3z /2 )
è
P ℓm (q ) = (-1 ) sin q (5 cos 2 q - 3/2)
= - 3 sin q/ 2 (5 cos 2 q - 1) = - 3/ 2 sin q (5 cos 2 q - 1 )
2)Write the full Laplace equation in spherical coordinates for a homogeneous medium with magnetic permeability m  ,  permittivity e, , conductivity, s    and frequency w.
For case in vacuo: Ñ 2 V = 0
For a homogeneous medium with magnetic permeability m , permittivity e, , conductivity, s and frequency w.
Ñ 2 V = = g 2 V = [ j w m (s + j w e)] V
Where g = Ö [ j w m (s + j w e)] is the propagation constant
So that:
3) We have:
d2 Q / d 2 q + cot q (d Q / d q ) + (a2 - m2/ sin2 q ) Q = 0
For case in vacuo: Ñ 2 V = 0
Which in spherical coordinates becomes:
1/ r 2  ¶ / ¶ r (r 2   ¶ V/¶ r  )  
+ 1/( r 2 sin q)  ¶ / ¶ q (sin q  ¶ V/¶ q)  +  
For a homogeneous medium with magnetic permeability m , permittivity e, , conductivity, s and frequency w.
Ñ 2 V = = g 2 V = [ j w m (s + j w e)] V
Where g = Ö [ j w m (s + j w e)] is the propagation constant
So that:
 1/ r 2  ¶ / ¶ r (r 2   ¶ V/¶ r  )   + 1/( r 2 sin q)  ¶ / ¶ q (sin q  ¶ V/¶ q)
+
+
3) We have:
d2 Q / d 2 q + cot q (d Q / d q ) + (a2 - m2/ sin2 q ) Q = 0
Where: a2    =  n(n + 1)
Then let: 
x = cos q,  sin 2 q = 1 – x 2  ,    d/ dq  = - sin  q d/ dx
Then we rewrite the Legendre equation after subst. as:
( 1 – x 2 ) d2 Q / d 2 x   - 2x d Q / d x  + [n(n + 1) -  m2/ 1 – x 2] Q = 0
 
No comments:
Post a Comment