Wednesday, February 17, 2021

Solutions To Linear Algebra Applications (To Lines, Planes)

1) Find the equation of the plane perpendicular to the vector at (-3, -2, 4), and passing through the point:

  P= (2, p, -5)

Solution:

 Using the given triples, we obtain the equation as:

 -3x – 2y + 4z = P · N

Whence: 
· N = [(-3)(2) + (2)( p) + 4(-5)] = -26 + 2 p  = -2(13 + p)


So: 

-3x -2y +4z = -2(13 + p)

Or reduced to:  -3x/2 – y + 2z = 13 +
p

 

2) Find the cosine of the angle between the planes:

 x + y + z = 1 and x – y – z = 5


Solution:

The respective vectors we need, from the coefficients of the equations are:

A = (1, 1, 1) and B = (1, -1, -1)

Then: cos(
Θ  ) = A · B/ [A]{B] =

{(1
·1) + (1 · (-1)) + (1) · (-1)} / {(1) 2 + (1) 2

 + (1) 2] [(1) 2  + (- 1) 2  +( 1) 2]}

Or cos (
Θ ) = -1 / {Ö (3) Ö (3)} = -1/ 3

No comments:

Post a Comment