Thursday, October 10, 2013

Math Solutions (Part I)


1     1)Given the function: u(x,y) = x3 – 3xy2

 
Show the function is harmonic on the entire complex plane.

 
The Cauchy- Riemann equations are:

 
u/ x  =   3 x2 – 3y2

 
u/ y     =  - 6xy

 
And also:   2 u/ x2  =   6x

 
And:  2 u/ y2  =   - 6x
 
 
Since:    2 u/ x2  +  2 u/ y2    =  6x + (-6x) = 0

 
It’s clear u(x,y) and its derivatives are everywhere continuous on the whole complex plane.
 
2) Given the function: u(x.y) = exp(-x) [x sin y – y cos y]

 
u/ x  =   exp(-x) (sin y) +  (-exp(-x)) [x sin y  – y cos y]
 
= exp(-x) (sin y) -  x exp(-x) sin y + y (exp(-x) ) cos y
 
2 u/ x2    =   / x  [exp(-x) (sin y) -  x exp(-x) sin y +

y (exp(-x) ) cos y]
 
=  -2 exp(-x) sin y + x exp(-x) sin y - y (exp(-x) ) cos y
 
 
AAlso:  u/ y  =    exp (-x) (x cos y + y sin y – cos y) =
 
x exp (-x) cos y + y (exp(-x) sin y -  exp(-x)  cos y

 
2 u/ y2    =  / y [x exp (-x) cos y + y (exp(-x) sin y -  exp(-x)  cos y]
 
= -  x exp(-x) sin y  + 2 exp(-x) sin y +  y (exp(-x) ) cos y
 
So that: 2 u/ x2  +  2 u/ y2    =   0
 
And the function u(x,y) is harmonic
 
(To be continued.)

 

No comments:

Post a Comment