Consider a
particle moving in a circle as shown below:

(Readers may want to examine this earlier post before going on:
http://brane-space.blogspot.com/2010/08/introduction-to-polar-coordinates-and.html )
We have the constraint on the motion:
r  = (x2  +   y2)½
By looking at such
constraints we can reduce the number of coordinates required to specify a
mechanical system.
We may write
generalized coordinates as:
q 1  , q 2  ……..  q
n   
This would apply to some system composed
of  n particles with position vectors:
r 1 ,   r
2  ……..  r n   
Such that we may
write:     å n i   q i
In
all such cases we require that the Jacobian determinant* J  ≠  0  else
no legitimate set of generalized coordinates can be defined in a specific form.  Consider the case
of the above for x,y variables with stationary axis:  x =  r cos q,       y = 
r sin q
And when the axis
is moving:   x= r cos  (wt   + f)  and:  y = r sin (wt   +  f)
Show that (x, y)
or (r, q) can be used as generalized
coordinates  q 1 , q 2  ……..  q
n   
Solution:
Let   x  =
x(q 1 , q
2 , t)
Then write:  x’  =
dx/ dt =
 (¶ x/¶ q
1) 
¶
q 1/¶ t  +(¶ x/¶ q
2) 
¶
q 2/¶t    +  ….¶ x/¶ t
dx/ dt =
  (¶ x/¶ q
1) 
q 1’   +  =  (¶ x/¶ q 2)  q 2’  +  ….….¶ x/¶ t
And:
x’   = r’ cos q   -   r
sin q  q’   
y’ =  r’  sin
q  +   r’
cos q q’   
(Rem:  r’   =  dr/ dt ;   q’  =  dq/ dt )
So
the coordinates work in either system, for circular motion
Generalized Momenta can be angular or linear:
 For generalized
forces: consider a particle which has moved an incremental amount  d r   where:
d r    =   d x i
  +  
d  y j       +  d jk   
This is an actual
displacement but so small that the forces don’t change, say for a vertical
displacement. For N particles we have:
d W    =  å N i   (F i x d x + 
F i y d y   
+ F i z d z )
Given:  
¶ x/¶ q’  =  p q
this can be referred to generalized coordinates: q 1  , q 2  ……..  q n   
d x = (¶ x/¶ q
1) d
q 1   +  (¶ x/¶ q
2) d
q 2    +
(¶ x/¶ q 3)
d q 3    
Or in polar
coordinates:
d x = cos q
d r  -
r sin d q
d y = sin q
d r  -
r cos d q
In general, we may
write:  d
W   =  Q k  d q k    
=   Q r  
y r    +  Q q  d q     
Consider now the
transformation of:
F   =  F  x  i
+  F  y 
j                                 To:
=   F r 
r    +  F q  q
The generalized
force is:
Q r       = -  ¶ V /¶ r  = 
 -  ¶ V /¶ x  
(-  ¶ x /¶ r  ) 
-  ¶ V /¶ y   (-  ¶ x /¶ y  )
=   F x  (¶ x /¶ r  )  
+    F  y  
(¶ y /¶ r )
= F x   cos q   +  F  y  
sin q  
=   F r
We may now introduce the
diagram below:
To derive generalized angular force  Q q :
Q q  
=   F x  (¶ x /¶ q )   +    F  y  
(¶ y /¶ q )
=    F x   r sin q   +  F  y 
r cos  q  
=  r F q
Note from the
diagram this is a component in the direction of   q ^  
It is of interest
here to obtain the Lagrangian in polar coordinates.  We know:
x   = r cos q   and  y
=  r 
sin q  
So that:
x’   = r’ cos q   -   r
sin q  q’   
y’ =  r’  sin
q  +   r’
cos q q’   
The kinetic energy
T is:
T  =  ½ m
( r’ 2    +   r
2 q ‘2 )
V =  mg r sin q
   
Therefore: 
L =   T  -
V  = 
½ m ( r’ 2    +   r
2 q ‘2 )  - mg r sin q  
It is also useful
to consider the unit vectors associated with polar coordinates in central force
problems: n pointing in direction of
increasing r, and l, in the
direction of increasing q .
The velocity
components can then be written:
v r    =  dr/
dt,       v q 
=   r dq  /dt
Using the polar
coordinate unit vectors (n, l) this
can be rewritten as:
v 
=   dr/ dt 
n   +  
r  dq  /dt l
For the change in
the radial coordinate alone:
v 
=   dr/ dt  
= d(r n)/ dt = ( dr/ dt  n   +   r
dn /dt)
Where the last
derivative can be evaluated from:
dn /dt  
=   dn / dq   (dq 
/dt) 
To evaluate  dn / dq     one makes use of the fact that by radian
measure of angles:
 D n   =  D q   
and in the limit as  D q   ®  0,   
‖D
n
‖ / ‖D q ‖   =   1
So:   dn / dq   =  l
i.e. 
As  D q   ®  0,  D n  
becomes perpendicular to n and
assumes the direction of  l .
In an analogous
way we may obtain  the relation:
dl / dq   =  -n
Finally, we have:  dn
/dt   =   
dq  /dt
l
And:  dl
/dt   =  
-  dq  /dt n
Problems:
1.   Using  one or more of the preceding unit vector relations,
obtain an expression for the acceleration in two dimensions of polar coordinates.
2.A particle  of mass m moves in a plane under the influence of a force F = - kr, directed toward the origin.  Sketch a polar coordinate system (r, q ) to describe the motion of the particle and thereby obtain the Lagrangian (L = T - V, i.e. difference in kinetic and potential energy).

Here is another article to view => Coordinates In Space – Formula Collection | Mathematics Class 12
ReplyDeleteThanks for the article!
ReplyDelete